抖音的算法,其实是一个漏斗机制,跟今日头条的去中心化的推荐算法原理基本一致。它分为三个步骤:
第一,冷启动流量池曝光
假设每天在抖音上有100万人上传短视频,抖音会随机给每个短视频分配一个平均曝光量的冷启动流量池。比如,每个短视频通过审核发出后,平均有1000次曝光
第二,数据挑选
抖音会从这100万个短视频的1000次曝光,分析点赞、关注、评论、转发等各个维度的数据,从中再挑出各项指标超过10%的视频,每条再平均分配10万次曝光。然后再去看哪些是点赞、关注、转发、评论是超过10%的,再滚进下一轮更大的流量池进行推荐。
第三,精品推荐池
通过一轮又一轮验证,筛选出来点赞率、播放完成率、评论互动率等指标都极高的短视频才有机会进入精品推荐池,用户打开时,看到的那些动辄几十上百万点赞量的视频就是这么来的